Synthesis and amination of 5- and 8-amino derivatives of 2-phenylnaphtho[2,3-d]-1,3-thiazole-4,9-dione

R. P. Shishkina* and N. V. Sergienko

Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 prosp. Akad. Lavrent'eva, 630090 Novosibirsk, Russian Federation.

Fax: +7 (383) 235 4752

5- and 8-Amino-2-phenylnaphtho[2,3-d]-1,3-thiazole-4,9-diones were obtained by treatment of 3,5-diamino-2-chloro- and 2,5-diamino-3-chloro-1,4-naphthoquinones with sodium sulfide followed by condensation with benzaldehyde. Thermal and photochemical butylamination and CoCl₂-promoted arylamination of 5-amino-2-phenylnaphthothiazole-4,9-dione in position 8 was carried out.

Key words: 1,4-naphthoquinone; 5- and 8-amino-2-phenyl-naphtho[2,3-d]-1,3-thiaz-ole-4,9-dione; heteroannelation; direct amination; photoamination.

Certain 5.8-diamino derivatives of 1.4-naphthoquinone that absorb in the near infrared region of the spectrum may be used in optical disks for laser recording of information. On going from 1,4-naphthoquinones to the corresponding derivatives of anthraquinone, a hypsochromic shift of the long-wavelength absorption maximum occurs, but the resulting dyes possess higher chemical and photochemical stabilities. Linearly heteroannelated 1,4-naphthoquinones combine the long-wavelength absorption of the naphthoquinone system with the stability typical of anthraquinone dyes, 2,3 which has been shown, in particular, for 5,8-diamino derivatives of 1,4-naphthoquinones fused with an imidazole^{2,4} or thiophene^{3,5} ring at positions 2 and 3. Of naphthoquinones having amino substituents in the benzene ring and fused with a 5-membered heterocycle containing both nitrogen and sulfur atoms, 5- and 8-monoamino derivatives of naphtho [2,3-d]-1,3-thiazole-4,9-dione (NTD) are known. These compounds differ little from one another in the absorption spectrum (λ_{max} 510 and 508 nm), but have a deeper color than 5-aminonaphtho[2,3-d]imidazole-4,9-dione (λ_{max} 487 nm). This has been explained by the fact that conjugation between the lone electron pair of the S atom in the fused thiazole ring and the π -electrons of the quinone is more pronounced than in the case of the N atom of the imidazole ring.6

In the present work we report the synthesis of 5- and 8-amino-2-phenylnaphtho [2,3-d]-1,3-thiazole-4,9-diones (1a,b) and an attempt to prepare 5,8-diamino derivatives of 2-phenyl-NTD based on them. We considered that the synthetic pathway to 2-phenyl-NTD, which has an amino group in the benzene ring, similar to that reported for NTD⁶ and involving nitration of

2-phenyl-NTD followed by reduction, was unsuitable owing to the presence of an additional phenyl ring, which would result in the formation of an even more complex mixture of products on nitration than that obtained previously, when a mixture of three isomers with similar $R_{\rm f}$ values was formed, and the yields of 5- and 8-nitro derivatives were as low as 3 and 19 %, respectively. We prepared 5- and 8-amino-2-phenyl-NTD 1a,b from 3,5-diamino-2-chloro- and 2,5-diamino-3-chloro-1,4-naphthoquinones (2a,b) by the known reaction with sodium sulfide and subsequent condensation in situ of the corresponding thiol derivatives (3a,b) with benzaldehyde in acetic acid (cf. Ref. 7) (Scheme 1).

In turn, 3,5- and 2,5-diaminonaphthoquinones 2a,b were prepared by amination of 5-amino-2,3-dichloro-1,4-naphthoquinone by aqueous ammonia in DMSO; isomers 2a and 2b were formed in a ratio of ~10:1, which is in agreement with the known data on the orientation of nucleophilic reagents in reactions with 1,4-naphthoquinones having an electron-donating substituent in position 5.8,9 The structure of isomer 2b is indicated by the fact that it is identical with the specimen prepared by reduction of 2-amino-3-chloro-5-nitro-1,4-naphthoquinone¹⁰ with SnCl₂ in AcOH.

It should be noted that condensation of diamines 3a,b with benzaldehyde yields, along with 5- and 8-amino-2-phenyl-NTD 1a,b, deeply colored products of their subsequent transformations. For example, in the case of the 2,5-diamino derivative, 8-benzylamino-2-phenyl-NTD (4) was isolated in 7 % yield, which may be explained by the condensation of the primary aromatic amine 1b with benzaldehyde and subsequent reduction of the resulting Schiff's base with aldehyde and/or sodium sulfide, which are present in excess in the reaction mixture.

Scheme 1

In order to synthesize 5,8-diamino derivatives of naphthothiazoledione we studied the possibility of nucleophilic replacement of the hydrogen atom in 5- and 8-amino-2-phenyl-NTD 1a,b, which is attractive from the practical point of view. No examples of the direct introduction of an alkyl- or arylamino group into the benzene ring of 1,4-naphthoquinones annelated with a heterocycle have been reported. The arylamination of an activated compound, 5-amino-2,3-dicyano-1,4-naphthoquinone, described in the literature, is made possible by quinone-quinonimine tautomerism (the second tautomer is 2,3-dicyano-4-hydroxy-5-imino-1,5-naphthoquinone). Photochemical and CoCl₂-promoted (see Ref. 13) alkylamination of 5-amino-2-butylamino-3-cyano-1,4-naphthoquinone in position 8 is also known.

We found that 5-amino-2-phenyl-NTD 1a does not react with aniline when boiled in ethanol or in a mixture of EtOH and AcOH (under the previously described conditions¹¹), and reacts only in the presence of Cu(OAc)₂ or CoCl₂ to give 5-amino-8-anilino-2-phenyl-NTD (5, 28 %). The reaction of compound 1a with the more basic butylamine (in the amine itself or in BuⁿOH) occurs at room temperature without metal ions and affords the 8-butylamino derivative (6a, 13 %). In benzene, the reaction occurs only under irradiation, and the yield of product 6a is 17 % (Scheme 2).

The fact that the second amino group is introduced into the *para*-position with respect to the amino group present in 5-amino-2-phenyl-NTD 1a is confirmed by

spectroscopic data. For example, the ¹H NMR spectrum of 8-anilino derivative **5** in DMSO- d_6 exhibits a sharp singlet at 12.42 ppm, in addition to the signals for the aromatic protons and a broadened singlet for one of the H atoms of the NH₂ group at 8.25 ppm, and the spectrum of 8-butylamino derivative **6a** contains a broadened singlet at 10.87 ppm. These signals correspond to the NH group bound to the carbonyl group located in the peri-position by an intramolecular hydrogen bond. Structure **6a** is also confirmed by the fact that the H-6 and H-7 protons of the benzene ring of the NTD are manifested as doublets at 7.01 and 7.14 ppm with $J_{ortho} = 9.5$ Hz.

8-Amino-2-phenyl-NTD 1b is less reactive than 1a: it does not react with aniline, and the reaction with butylamine occurs only in the presence of CoCl₂ to yield only traces of the corresponding 5-butylamino derivative (6b) (Scheme 3).

Scheme 3

The electronic absorption spectrum of the latter, like the spectra of compounds 5 and 6a, exhibits two maxima in the long-wavelength region, at 602 and 650 nm, which is typical of 5,8-diamino substituted 1,4-naphthoquinones. 12,13 In the photochemical amination of compound 1b with butylamine (an inert atmosphere, radiation wavelength ≥ 400 nm), we also obtained no more than 3 % diamine 6b. This difference in the reactivities of 5- and 8-amino isomers 1a and 1b is

difficult to explain without the calculation data. It is possible that the activation of the benzene ring in 1a is somewhat greater than in 1b owing to the formation of a stronger intramolecular hydrogen bond, which is indicated by the spectroscopic data. For example, the signal for NH in the ¹H NMR spectrum of 1a is shifted downfield with respect to the corresponding signal for compound 1b by 0.08 ppm.

In contrast to 2-phenylnaphtho-1,3-thiazole-4,9dione, which has no amino group in the naphthoquinone benzene ring, 5- and 8-amino-2-phenyl-NTD 1a,b undergo thermal and photochemical amination in positions 8 and 5, respectively. The direct alkylamination observed for 5-amino-2-phenyl-NTD 1a is probably made possible by the formation of the quinonimine structure, as has been described for 5-amino-2.3-dicyano-1,4-naphthoquinone. 11 Arylamination of compound 1a and butylamination of 8-amino-2-phenyl-NTD 1b, which occurs only in the presence of CoCl₂, attests to the relatively low reactivity of these compounds and probably occurs according to the mechanism suggested for amination of 1-aminoanthraquinone. 14 First, a six-membered complex is formed in which a metal atom is bonded with the carbonyl oxygen atom and with the nitrogen atom of the peri-located amino group. The subsequent nucleophilic attack on position 5 or 8 (the para-position with respect to the amino group already present in the ring) by the amine and oxidative abstraction of a hydride anion give the direct amination prodnct

Experimental

The electronic absorption spectra (UV/VIS) were recorded on Specord UV-VIS and Beckman DU-8 spectrophotometers; IR spectra were obtained on a Specord M-80 instrument in CHCl $_3$ and in KBr pellets. 1H NMR spectra were run on Bruker WP-200 SY and Bruker AC-200 spectrometers. The molecular weights and elemental compositions of compounds were determined from the precise mass numbers of molecular ions obtained on Finnigan MAT 8200 and AEI MS-902 mass spectrometers (EI, 70 eV). The course of the reactions was monitored by TLC using Silufol UV 254 plates and a $C_6H_6-Me_2CO$ (9:1) mixture as the eluent. Preparative chromatography was carried out on columns with KSK silica gel (0.140–0.315 μ m) and Al_2O_3 (activity II) and on plates with an unfixed sorbent layer (SiO $_2$, PKN-200, 100–200 μ m) in C_6H_6 and CHCl $_3$.

2,5-Diamino-3-chloro-1,4-naphthoquinone (2b) was prepared by the reduction of 2-amino-3-chloro-5-nitro-1,4-naphthoquinone ¹⁰ with SnCl₂ · 2H₂O according to the known procedure. ¹⁵ Yield 83 %, m.p. 197 °C (from benzene). $R_{\rm f}$ 0.35. Found (%): Cl, 15,44. m/z: 222.0168 [M]⁺. C_{10} H₇ClN₂O₂. Calculated (%): Cl, 15.76. Mol. weight 222.0196. IR, v/cm^{-1} : 3455, 3430, 3370, 3325 (NH₂); 1620 (C=O). UV/VIS (EtOH), $\lambda_{\rm max}/nm$ (ϵ): 270 (16000), 300 sh (11300), 461 (3830), 518 (4500). ¹H NMR (DMSO-d₆), ϵ : 7.01 (br.s, 2 H, NH₂); 7.09 (dd, J_o = 9 Hz, J_m = 1.5 Hz, 1 H, H-6); 7.22 (dd, J_o = 7 Hz, 1 H, H-8); 7.33 (t, 1 H, H-7); 7.58 (br.s, 2 H, 5-NH₂).

3,5-Diamino-2-chloro-1,4-naphthoquinone (2a). 40 mL of 25 % ammonia was added at 50 °C to a solution of 2.42 g of

5-amino-2,3-dichloro-1,4-naphthoquinone in 80 mL of DMSO. The mixture was stirred for 1 h and poured into 100 mL of water. The precipitate was filtered off, dried, and chromatographed on a column with SiO₂. Elution with C₆H₆ gave 0.11 g (5 %) of **2b** and elution with a 1 : 1 C₆H₆—CHCl₃ mixture gave 1.06 g (48 %) of **2a**, m.p. 291—292 °C (from EtOH). R_f 0.21. Found (%): C, 54.39; H, 2.93; Cl, 15.15; N, 12.17. m/z: 222 [M]⁺. C₁₀H₇ClN₂O₂. Calculated (%): C, 54.05; H, 3.18; Cl, 15.76; N, 12.62. IR, v/cm^{-1} : 3465, 3430, 3350, 3320 (NH₂); 1665 (C=O). UV/VIS (EtOH), λ_{max}/nm (ϵ): 250 (17500), 266 sh (12700), 295 sh (7990), 460 (5300), 492 (5070). ¹H NMR (DMSO-d₆), δ : 7.04 (d, J = 9 Hz, 1 H, H-6); 7.20 (d, J = 7 Hz, 1 H, H-8); 7.37—7.45 (m, 3 H, H-7 and NH₂); 7.89 (br.s, 2 H, NH₂).

3,5-Ďiamino-2-mercapto-1,4-naphthoquinone (3a) was prepared by a procedure similar to that described previously. Yield 77 %, m.p. 243—245 °C (precipitated from DMF by water). Found (%): S, 14.80. m/z: 220 [M]⁺. $C_{10}H_8N_2O_2S$. Calculated (%): S, 14.53. ¹H NMR (DMSO-d₆), δ : 7.00—7.51 (m, 5 H arom. and NH₂); 7.95 (br.s, 2 H, 5-NH₂); 8.46 (br.s, 1 H, SH).

5-Amino-2-phenylnaphtho[2,3-d]-1,3-thiazole-4,9-dione (1a). 4.8 g (0.02 mol) of Na₂S · 9H₂O was added with stirring to a suspension of 2.2 g (0.01 mol) of 3,5-diaminoquinone 2a in 15 mL of water and 8 mL of EtOH heated to 70 °C. The mixture was stirred for 30 min, and 2 mL (0.02 mol) of PhCHO, 4 mL of AcOH, and 4 mL of H₂O were added. The mixture was stirred for an additional 30 min and cooled to room temperature. 12 mL of EtOH was added, and the mixture was cooled to 5-10 °C and held at this temperature for 1 h. The black resin was filtered off and washed with water until the washings became colorless. The dry residue was dissolved in C₆H₆ and chromatographed on a column with Al₂O₃. The main dark-red fraction* was eluted with CHCl₃ and concentrated under reduced pressure to give 0.86 g (28 %) of 1a, m.p. 294-295 °C (from benzene). R_f 0.51. Found (%): C, 66.65; H, 3.41; N, 8.84; S, 10.30. m/z: 306.0450 [M]⁺. $C_{17}H_{10}N_2O_2S$. Calculated (%): C, 66.65; H, 3.29; N, 9.15; S, nm (ε): 277 (6960), 384 (1480), 516 (1560). ¹H NMR (DMSO d_6), δ : 7.22 (d, J = 9 Hz, 1 H, H-6); 7.33 (d, J = 7 Hz, 1 H, H-8); 7.45 (t, 1 H, H-7); 7.58 (m, 3 H, H-3'-H-5'); 8.09 (m, 3 H, H-2', H-6', 1 H from NH₂**).

8-Amino-2-phenylnaphtho[2,3-d]-1,3-thiazole-4,9-dione (1b) and 8-benzylamino-2-phenylnaphtho[2,3-d]-1,3-thiazole-4,9-dione (4) were prepared from 2,5-diamino-3-chloronaphthoquinone 2b according to the above-described procedure. Elution with C_6H_6 afforded 8-benzylamino-2-phenyl-NTD 4, yield 7%, m.p. 255–256 °C (from benzene). $R_{\rm f}$ 0.83. Found, m/z: 396.0912 [M]+. $C_{24}H_{16}N_2O_2S$. Calculated, mol. weight: 396.0933. IR, $v/{\rm cm}^{-1}$: 3420 (NH); 1660, 1615 (C=O). UV/VIS (CHCl₃), $\lambda_{\rm max}/{\rm nm}$ (a): 370 (1200), 546 (9640). ¹H NMR (CDCl₃), δ : 4.59 (d, 3J = 5.5 Hz, 2 H, CH₂); 7.03 (dd, J_o = 9, J_m = 1.5 Hz, 1 H, H-7); 7.35–7.51 (m, 9 H, H-3'-H-5', H-2"-H-6", H-6); 7.65 (dd, J_o = 7, J_m = 1.5 Hz, 1 H, H-5); 8.11 (m, 2 H, H-2', H-6'); 9.89 (br.s, 1 H, NH). The second fraction was eluted with CHCl₃, and 8-amino-2-phenyl-NTD 1b (36%) was isolated, m.p. 343–

^{*} The first fraction contained trace amounts of a violet compound with $R_{\rm f}$ 0.85, similar to **4**.

^{**} One of the H atoms of the NH₂ group exchanges with deuterium from the solvent.

345 °C (from chloroform). $R_{\rm f}$ 0.60. Found, m/z: 306.0468 [M]⁺. ${\rm C_{17}H_{10}N_2O_2S}$. Calculated, mol. weight: 306.0463. IR, v/cm⁻¹: 3440, 3325 (NH₂); 1665, 1605—1620 br (C=O). UV/VIS (CHCl₃), $\lambda_{\rm max}$ /nm (ϵ): 278 (4620), 385 (1020), 501 (4220); UV/VIS (DMF), $\lambda_{\rm max}$ /nm (ϵ): 282 (14600), 516 (4260). ¹H NMR (DMSO-d₆), δ : 7.22 (dd, J_o = 9 Hz, J_m = 1.5 Hz, 1 H, H-7); 7.43 (dd, J_o = 7 Hz, 1 H, H-5); 7.54 (t, 1 H, H-6); 7.61 (m, 3 H, H-3'—H-5'); 8.01 (br.s, 1 H from NH₂*); 8.13 (m, 2 H, H-2', H-6').

5-Amino-8-anilino-2-phenylnaphtho[2,3-d]-1,3-thiazole-4,9-dione (5). A suspension of 0.092 g (0.3 mmol) of **1a**, 5 mL of aniline, and 0.040 g (0.3 mmol) of CoCl₂ in 10 mL of AcOH was boiled for 24 h. The reaction mixture was repeatedly treated with 1 % HCl and hot water, and the hardened residue was filtered off, dried, dissolved in CHCl₃, and chromatographed on plates with Al₂O₃ using CHCl₃ as the eluent. 0.022 g (24 %) of the starting **1a** was recovered and 0.034 g (28 %) of compound **5** was obtained, m.p. 285–287 °C (from a C_6H_6 -EtOH mixture (1 : 1)). R_f 0.20. Found, m/z: 397.0871 [M]⁺. $C_{24}H_{17}N_3O_2S$. Calculated, mol. weight 397.0890. IR (CHCl₃), v/cm^{-1} : 3485, 3280, 3265 (NH, NH₂); 1645 (C=O). UV/VIS (CHCl₃), λ_{max}/nm (ε): 300 (36000), 382–407 sh (4200), 616 (14800), 661 (16000). ¹H NMR (DMSO-d₆), δ: 7.22–7.61 (m, 10 H arom.); 8.12 (m, 3 H, H-2', H-6', and 1 H from NH₂); 8.25 (br.s, 1 H, NH₂); 12.42 (s, 1 H, NH).

5-Amino-8-butylamino-2-phenylnaphtho[2,3-d]-1,3-thiazole-4,9-dione (6a). A solution of 0.030 g (0.1 mmol) of 1a and 3 mL of BuNH, in 3 mL of BunOH was kept for 3 days at room temperature, the solvent was removed as an azeotrope with water under reduced pressure, and the residue was treated with 1 % HCl. The precipitate was filtered off, washed with water, dried, and chromatographed on plates with SiO2 using CHCl₃ as the eluent to give 0.010 g of 1a and 0.005 g (13 %) of **6a**, m.p. 115–117 °C. R_f 0.15. Found, m/z: 377.1200 [M]⁺ $C_{21}H_{19}N_3O_2S$. Calculated, mol. weight 377.1198. IR, v/cm⁻¹: 3470, 3420, 3400 (NH, NH₂); 2925, 2860 (CH₂); 1645, 1635 (C=O). UV/VIS (CHCl₃), λ_{max}/nm (ε): 380 (2000), 601 (6460), 650 (7460). ¹H NMR (CDCl₃), δ: 0.98 (t, 3 H, CH₃); 1.28 (m, 2 H, CH₂); 1.69 (m, 2 H, CH₂); 3.43 (q, 2 H, CH₂-N); 7.01 (d, J = 9.5 Hz, 1 H, H-7(6)); 7.14 (d, J = 9.5 Hz, 1 H, H-6(7)); 7.48 (m, 5 H, Ph); 8.15 (m, 2 H, NH₂); 10.87 (br.s, 1 H, NH).

Photochemical reaction of 5- and 8-amino-2-phenyl-NTD (1a,b) with butylamine. A flow of argon was passed for 45 min through a solution of 10 mg (0.03 mmol) of 1a,b and 1 mL of $\mathrm{Bu^nNH_2}$ in 30 mL of $\mathrm{dry}\ \mathrm{C_6H_6}$ in a Pyrex tube, then the tube was evacuated and sealed. Photolysis was carried out at 21 °C for 60 h by the light of a DRSh-500 lamp passed through a water light filter and a ZhS-11 light filter. The solvent was

removed under reduced pressure and the residue was treated with 1 % HCl, washed with water, filtered, dried, and chromatographed on plates with SiO_2 (CHCl₃). In the experiment with 1a, 4 mg (40 %) of the starting compound was recovered and 2 mg (17 %) of 6a was obtained. In the case of 1b, the yield of 6b was 2-3 %, the rest was a mixture of a great number of compounds that were difficult to separate.

8-Amino-5-butylamino-2-phenyl-NTD (6b), m.p. ~190 °C (dec.), $R_{\rm f}$ 0.31. Found, m/z: 377.1200 [M]⁺. $C_{21}H_{19}N_3O_2S$. Calculated, mol. weight 377.1198. UV/VIS (CHCl₃), $\lambda_{\rm max}/{\rm nm}$ (ϵ): 383 (2500), 602 (6760), 650 (7700). ¹H NMR (CDCl₃) δ : 0.97 (t, 3 H, CH₃); 1.29 (m, 2 H, CH₂); 1.65 (m, 2 H, CH₂); 3.44 (q, 2 H, CH₂—N); 6.97 (d, J = 9.5 Hz, 1 H, H-6(7)); 7.16 (d, J = 9.5 Hz, 1 H, H-7(6)); 7.47 (m, 5 H, Ph); 8.17 (m, 2 H, NH₂); 11.23 (br.s, 1 H, NH).

References

- 1. T. N. Gerasimova and V. V. Shelkovnikov, *Usp. Khim.*, 1992, **61**, 102 [*Russ. Chem. Rev.*, 1992, **61** (Engl. Transl.)].
- 2. G. Green-Buckley and J. Griffits, J. Chem. Soc., Perkin Trans. 1, 1979, 702.
- 3. B. A. Tilak, in *Khimiya sinteticheskikh krasitelei* [Chemistry of Synthetic Dyes], Ed. K. Venkataraman, Khimiya, Leningrad, 1974, 3, 2097 (in Russian).
- L. S. Efros, G. N. Kul'bitskii, and M. G. Romanova, Khim. Geterotsikl. Soedin., 1970, 219 [Chem. Heterocycl. Compd., 1970 (Engl. Transl.)].
- A. P. Krapcho, M. E. Petry, and M. P. Macker, J. Med. Chem., 1990, 33, 2661.
- T. Nakamori and T. Kasai, J. Chem. Soc. Jpn. Chem. Ind. Chem., 1986, 1091.
- 7. A. R. Katrirzky and W.-Q. Fan, J. Heterocyclic Chem., 1988, 25, 901.
- M. D. Rozeboom, I.-M. Termo-Larsson, and K. H. Houk, J. Org. Chem., 1981, 46, 2338.
- 9. K. Y. Chu and J. Griffiths, J. Chem. Soc., Perkin Trans. 1, 1979, 696.
- L. P. Slesarchuk and V. T. Kolesnikov, Vestn. L'vov. politekhn. in-ta [J. of L'vov Polytechn. Inst.], 1977, No. 127, 59 (in Russian).
- 11. K. Takagi, M. Matsuoka, Y. Kubo, and T. Kitao, *Dyes and Pigments*, 1985, 6, 75.
- M. Matsuoka, K. Takagi, H. Tajima, K. Ueda, and T. Kitao, J. Chem. Soc., Perkin Trans. 1, 1984, 1297.
- M. Matsuoka, T. Takei, I. Nakamura, and T. Kitao, J. Jpn. Soc. Colour Material, 1981, 54, 425.
- K. Yoshida, M. Matsuoka, Y. Yamashita, and T. Kitao, Bull. Chem. Soc. Jpn., 1980, 53, 2552.
- N. V. Ivashkina, V. S. Romanov, A. A. Moroz, and M. S. Shvartsberg, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1984, 2561 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1984, 33, 2345 (Engl. Transl.)].

^{*} One of the H atoms of the NH_2 group exchanges with deuterium from the solvent.